Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.

Identifieur interne : 000375 ( Main/Exploration ); précédent : 000374; suivant : 000376

Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.

Auteurs : Rey-Huei Chen [Taïwan]

Source :

RBID : pubmed:31017826

Descripteurs français

English descriptors

Abstract

Mitosis in metazoans involves detachment of chromosomes from the nuclear envelope (NE) and NE breakdown, whereas yeasts maintain the nuclear structure throughout mitosis. It remains unknown how chromosome attachment to the NE might affect chromosome movement in yeast. By using a rapamycin-induced dimerization system to tether a specific locus of the chromosome to the NE, I found that the tethering delays the separation and causes missegregation of the region distal to the tethered site. The phenotypes are exacerbated by mutations in kinetochore components and Aurora B kinase Ipl1. The chromosome region proximal to the centromere is less affected by the tether, but it exhibits excessive oscillation before segregation. Furthermore, the tether impacts full extension of the mitotic spindle, causing abrupt shrinkage or bending of the spindle in shortened anaphase. The study supports detachment of chromosomes from the NE being required for faithful chromosome segregation in yeast and segregation of tethered chromosomes being dependent on a fully functional mitotic apparatus.

DOI: 10.1091/mbc.E19-02-0098
PubMed: 31017826
PubMed Central: PMC6727638


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.</title>
<author>
<name sortKey="Chen, Rey Huei" sort="Chen, Rey Huei" uniqKey="Chen R" first="Rey-Huei" last="Chen">Rey-Huei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Molecular Biology, Academia Sinica, Taipei 11529</wicri:regionArea>
<wicri:noRegion>Taipei 11529</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31017826</idno>
<idno type="pmid">31017826</idno>
<idno type="doi">10.1091/mbc.E19-02-0098</idno>
<idno type="pmc">PMC6727638</idno>
<idno type="wicri:Area/Main/Corpus">000287</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000287</idno>
<idno type="wicri:Area/Main/Curation">000287</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000287</idno>
<idno type="wicri:Area/Main/Exploration">000287</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.</title>
<author>
<name sortKey="Chen, Rey Huei" sort="Chen, Rey Huei" uniqKey="Chen R" first="Rey-Huei" last="Chen">Rey-Huei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Molecular Biology, Academia Sinica, Taipei 11529</wicri:regionArea>
<wicri:noRegion>Taipei 11529</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anaphase (physiology)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Centromere (metabolism)</term>
<term>Chromosome Segregation (physiology)</term>
<term>Chromosomes (genetics)</term>
<term>Chromosomes (physiology)</term>
<term>Genomic Instability (genetics)</term>
<term>Kinetochores (metabolism)</term>
<term>Mitosis (genetics)</term>
<term>Mitosis (physiology)</term>
<term>Nuclear Envelope (metabolism)</term>
<term>Nuclear Envelope (physiology)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Spindle Apparatus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anaphase (physiologie)</term>
<term>Appareil du fuseau (métabolisme)</term>
<term>Centromère (métabolisme)</term>
<term>Chromosomes (génétique)</term>
<term>Chromosomes (physiologie)</term>
<term>Enveloppe nucléaire (métabolisme)</term>
<term>Enveloppe nucléaire (physiologie)</term>
<term>Instabilité du génome (génétique)</term>
<term>Kinétochores (métabolisme)</term>
<term>Mitose (génétique)</term>
<term>Mitose (physiologie)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Ségrégation des chromosomes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes</term>
<term>Genomic Instability</term>
<term>Mitosis</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromosomes</term>
<term>Instabilité du génome</term>
<term>Mitose</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Centromere</term>
<term>Kinetochores</term>
<term>Nuclear Envelope</term>
<term>Schizosaccharomyces</term>
<term>Spindle Apparatus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil du fuseau</term>
<term>Centromère</term>
<term>Enveloppe nucléaire</term>
<term>Kinétochores</term>
<term>Protéines du cycle cellulaire</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Anaphase</term>
<term>Chromosomes</term>
<term>Enveloppe nucléaire</term>
<term>Mitose</term>
<term>Ségrégation des chromosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Anaphase</term>
<term>Chromosome Segregation</term>
<term>Chromosomes</term>
<term>Mitosis</term>
<term>Nuclear Envelope</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitosis in metazoans involves detachment of chromosomes from the nuclear envelope (NE) and NE breakdown, whereas yeasts maintain the nuclear structure throughout mitosis. It remains unknown how chromosome attachment to the NE might affect chromosome movement in yeast. By using a rapamycin-induced dimerization system to tether a specific locus of the chromosome to the NE, I found that the tethering delays the separation and causes missegregation of the region distal to the tethered site. The phenotypes are exacerbated by mutations in kinetochore components and Aurora B kinase Ipl1. The chromosome region proximal to the centromere is less affected by the tether, but it exhibits excessive oscillation before segregation. Furthermore, the tether impacts full extension of the mitotic spindle, causing abrupt shrinkage or bending of the spindle in shortened anaphase. The study supports detachment of chromosomes from the NE being required for faithful chromosome segregation in yeast and segregation of tethered chromosomes being dependent on a fully functional mitotic apparatus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31017826</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.</ArticleTitle>
<Pagination>
<MedlinePgn>1578-1586</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E19-02-0098</ELocationID>
<Abstract>
<AbstractText>Mitosis in metazoans involves detachment of chromosomes from the nuclear envelope (NE) and NE breakdown, whereas yeasts maintain the nuclear structure throughout mitosis. It remains unknown how chromosome attachment to the NE might affect chromosome movement in yeast. By using a rapamycin-induced dimerization system to tether a specific locus of the chromosome to the NE, I found that the tethering delays the separation and causes missegregation of the region distal to the tethered site. The phenotypes are exacerbated by mutations in kinetochore components and Aurora B kinase Ipl1. The chromosome region proximal to the centromere is less affected by the tether, but it exhibits excessive oscillation before segregation. Furthermore, the tether impacts full extension of the mitotic spindle, causing abrupt shrinkage or bending of the spindle in shortened anaphase. The study supports detachment of chromosomes from the NE being required for faithful chromosome segregation in yeast and segregation of tethered chromosomes being dependent on a fully functional mitotic apparatus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Rey-Huei</ForeName>
<Initials>RH</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000705" MajorTopicYN="N">Anaphase</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002503" MajorTopicYN="N">Centromere</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002875" MajorTopicYN="N">Chromosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042822" MajorTopicYN="N">Genomic Instability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018386" MajorTopicYN="N">Kinetochores</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009685" MajorTopicYN="N">Nuclear Envelope</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008941" MajorTopicYN="N">Spindle Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31017826</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E19-02-0098</ArticleId>
<ArticleId IdType="pmc">PMC6727638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2014 Sep 15;206(6):719-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Feb 1;29(3):322-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25644606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jul 2;73(7):1267-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8324822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Sep 26;31(6):925-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 30;12(9):R316-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12007431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 2;280(48):39925-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2000 Apr;129(2-3):159-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Nov 2;187(3):413-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Sep;12(9):2800-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2017 Jan;27(1):26-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 May 21;8(11):653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9635192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Dec 23;12(24):2076-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Oct 23;22(20):1932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22959349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 May;17(5):2451-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16495336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 15;30(6):e23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Mar 24;23(6):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Sep;22(18):3306-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Oct 3;91(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Nov 2;143(3):687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9813090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 24;48(7):1636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Mar 15;1677(1-3):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2019 Feb 15;30(4):427-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30586323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Mar;25(6):891-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Dec 1;6(12):1599-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 May 18;61(4):579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2344612</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Chen, Rey Huei" sort="Chen, Rey Huei" uniqKey="Chen R" first="Rey-Huei" last="Chen">Rey-Huei Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31017826
   |texte=   Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31017826" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020